- ordered engineering sample of CDF LOO-type cable from Dyconex in May/June 2001
 - manufactured in a new process technology: thermal direct imaging with infrared sensitive photoresist
 - after material optimization studies by Dyconex, the first two pre-prototypes have been delivered by 9/30
 - no gold plating and no solder resist applied, cables have unprotected bare copper traces and were untrimmed
 - one cable sent to FNAL the other kept at Zurich for testing
 - have results for these two on visual inspection, opens/shorts, capacitance and resistance
 - last week got another 23 cables, which I brought to FNAL
 - ✓ engineering run now over
 - √ these cables are gold plated, have solder resist and are trimmed

- schematics of the cable (L00):
 - 128 channels/traces
 - 13.7 cm of 50μm pitch traces
 - 26.0 cm of 100µm pitch traces
 - fan-in and fan-out region (1.7-2.9 cm)
 - total trace length including fan-in/out between 41.4 - 42.6 cm
 - 2 rows of bond pads on each side
 - two traces for bias lines
- general
 - Dyconex tried to minimize trace width (lower capacitance)
 - trace width measured typically to 7-8 μm

- bond pad regions:
 - outer pads are big enough, size is $\sim 50 \ \mu m \times 210 \ \mu m$
 - pads of inner row region very small,
 only ~30 μm x 190 μm
 - ✓ Dyconex can try to increase pad size, but not by much. Difficult, since distance pad-trace becomes ~20um
 - ✓ bond tests necessary to see if we can wire bond on such small pads
 - ✓ two different kind of platings on pads on the 23 new cables: only gold and nickel+gold

outer

inner

- performed optical inspection and electrical measurement on first flex cable
 - total of 3 open traces visually found v not so bad for first shot!
 - opens confirmed by trace continuity measurements
 - no shorted traces detected, only few regions with slight metal excess

open trace

excess metal – no short

- Other typical problems:
 - regular and systematic trace offset by ~5 μ m every 2 mm (just a shift of one pixel size during imaging)
 - inherent to imaging process and fixed only by a new plotter (a purchase is planned in one year from now)

- in fan-in/out regions, critical thinning of traces along the horizontal axis observed
- trace width should be increased in fan-in/out region

- spots of adhesive on few traces
- looks serious, but not harmful better cleaning/rinsing will be done for further flexes

fine pitch flex cable from Dyconex

- Capacitance measurements
 - LCR four probe measurement
 - measure capacitance of one trace against all others (total capacitance seen by one trace)

At 1 MHz: C~15.3 pF for 42cm => 0.36pF/cm At frequencies above 1MHz capacitance measurement inaccurate due to cable inductance. Result confirmed by Kazu's measurements at FNAL with 2nd cable

fine pitch flex from Dyconex

- Capacitance of one trace to the left and right neighbors has been determined to be 12 pF only,i.e. 0.28 pF/cm
 - next-to-next neighbors carry 20% of the total capacitance
 - the 0.28 pF/cm is in fair agreement with analytical calculation (~0.23pF/cm):

fine pitch flex from Dyconex

- the capacitance will be higher if solder resist (coating) is applied
- calculations show an 20% increase for 2μm coating
- expect for the new 23 cables higher capacitances
- need also to disentangle experimentally the part of the capacitance with 50μm and 100μm pitch
- noise contribution:
 - assume SVX4: 450+43*C_tot and 1.2pF/cm for Si
 - C_tot=C_Si+C_flex~37pF (for 42cm cable)
 - noise~2040e
 - acceptable

- trace resistance as measured by H. Haggerty R~200-220 Ω or 4.7-5.2 Ω /cm
- expect ~4.3-4.9 Ω /cm from copper resistance and trace widths and thickness

- serial noise due to R_s: ENC=13*C_tot*√(R_s/τ)
- $R_s = R_s Si + R_s flex$
 - R_s _Si specified to be less than $30\Omega/cm$
 - $R_s = 500 520 \Omega$
 - serial noise ~950e
 - However: conservative noise assumption
- total noise: 2250e
- wider traces would decrease R_s but enlarge capacitance => stay with thin traces

shielding

- CDF experience shows that shielding of cable is mandatory to avoid noise pick up
- ground layer will also reduce cross talk induced by inductive coupling
- for LO, cables will run in a stack of up to 12 single flex cables
- stacked cables also exhibit capacitances to each other
 have to separate cables
- however: space constrains are tight
 - maximum 4.6 mm space left before we hit outer sensors
 - subtract 1 mm clearance for wirebonds
 - stacked cable area: 3.6mm left, meaning ~200μm in between cables
 - how 'flat' can we stack flex cables? Have to allow for tolerances, bends, warps in the cables
- individual shield:
 - sandwich the single cable by a 80 μm thick low-ε material (foam) underneath the cable and add a mesh copper layer with copper laminated Kapton
 - copper layer can be used for individual +HV supply
 - extremely difficult to make individual shields under such tight space constrains
- common shielding:
 - wrap stack into a copper foil
- Guard trace: add additional guard traces on flex

shielding

- additional GND layer under the Kapton flex will increase capacitances seen by one trace
- shown is a calculation for two ϵ_r for a CPW (w/o GND layer) and a CPWCB (w/GND layer)
- Capacitance to GND layer not important for heights>200 μ m (100 μ m) if ϵ_r =3.5 (1.5)

Repair on cables

- tit is unlikely to get zero fault cables
- accept cables with 1-2 faults, either opens or shorts
- repair on painted (i.e. having solder resist) cable is time consuming. CDF has done it though
- bonding the traces (~7um wide) in case of opens is extremely difficult:
 - need very thin wire ~<10um</p>
 - ETH Zurich has some experience with ultra-thin wires (AMS)
 - however: bonding on copper difficult
- propose two pairs of spare traces at left and right border of cable
- open or shorted traces can then conveniently skipped

How to proceed with fine pitch flex from Dyconex

- from prototypes to preproduction:
 - Dyconex would have more process parameters to tune in order to improve the quality of the cable
 - engineering run is over and 'the remaining 10%' are making the effort as the Dyconex engineer says
 - especially gold plating is not yet optimized
 - ✓ several problems related to plating process
 - √ bonding is an important issue
 - preliminary price tag for a mass production:
 \$409/pc with one allowed bad trace
 - have to go with at least another prototype sample as soon as we have our own cable layout
 - Dyconex is moving their plant to outside the city limit of Zurich (still relatively close too my place)
 - they expect to be back in operation by February 2002

other games to play

- try to go with a 25μm thick Kapton cable => will reduce the capacitance
- plasma etch Kapton material between copper traces in order to make grooves into the cable => lower capacitance
- use another dielectric substrate than standard Kapton
 - add halogens?
 - polyethylene or similar. Has lower dielectric constant. However, radiation hardness not really good
 - Liquid polymer too fancy

Conclusion: fine pitch flex from Dyconex

- we have received flexes from Dyconex which are extraordinary difficult to make
- these cables have been engineered in a rather short time (June - October) and using a new technique
- I think Dyconex is close to demonstrate us that they are able to do such cables - but we should wait upon the result of the 23 cables
 - √ image transfer works
 - √ copper etching works
 - ✓ gold plating still a problem
- for further improvements on cables and if we want to go with Dyconex we should make another prototype run
- before we can launch this prototype run in February or March we need to converge on the design